Peripheral nervous system

Brain: Peripheral nervous system
The Human Nervous System. Blue is PNS while red is CNS.

The peripheral nervous system (PNS) consists of the nerves and ganglia outside of the brain and spinal cord.[1] The main function of the PNS is to connect the central nervous system (CNS) to the limbs and organs. Unlike the CNS, the PNS is not protected by the bone of spine and skull, or by the blood–brain barrier, leaving it exposed to toxins and mechanical injuries. The peripheral nervous system is divided into the somatic nervous system and the autonomic nervous system; some textbooks also include sensory systems. It is also a part of the nervous system.[2]

The cranial nerves are part of the PNS. The cranial nerve ganglia originate in the CNS. However, axons extend beyond the brain and are therefore considered part of the PNS.[3]

Contents

General classification

By direction

There are two types of neurons, carrying nerve impulses in different directions. These two groups of neurons are:

By function

The peripheral nervous system is functionally as well as structurally divided into the somatic nervous system and autonomic nervous system. The somatic nervous system is responsible for coordinating the body movements, and also for receiving external stimuli. It is the system that regulates activities that are under conscious control. The autonomic nervous system is then split into the sympathetic division, parasympathetic division, and enteric division. The sympathetic nervous system responds to impending danger, and is responsible for the increase of one's heartbeat and blood pressure, among other physiological changes, along with the sense of excitement one feels due to the increase of adrenaline in the system. ("fight or flight" responses). It also slows down the digestive system so that more blood is available to carry oxygen to the vital organs such as brain, heart and muscles. The parasympathetic nervous system, on the other hand, is evident when a person is resting and feels relaxed, and is responsible for such things as the constriction of the pupil, the slowing of the heart, the dilation of the blood vessels, and the stimulation of the digestive and genitourinary systems. ("rest and digest" responses). The role of the enteric nervous system is to manage every aspect of digestion, from the esophagus to the stomach, small intestine and colon.

Specific nerves and plexi

Ten out of the twelve cranial nerves originate from the brainstem ,and mainly control the functions of the anatomic structures of the head with some exceptions. The nuclei of cranial nerves I and II lie in the forebrain and thalamus, respectively, and are thus not considered to be true cranial nerves. CN X (10) receives visceral sensory information from the thorax and abdomen, and CN XI (11) is responsible for innervating the sternocleidomastoid and trapezius muscles, neither of which is exclusively in the head.

Spinal nerves take their origins from the spinal cord. They control the functions of the rest of the body. In humans, there are 31 pairs of spinal nerves: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal. In the cervical region, the spinal nerve roots come out above the corresponding vertebrae (i.e. nerve root between the skull and 1st cervical vertebrae is called spinal nerve C1). From the thoracic region to the coccygeal region, the spinal nerve roots come out below the corresponding vertebrae. It is important to note that this method creates a problem when naming the spinal nerve root between C7 and T1 (so it is called spinal nerve root C8). In the lumbar and sacral region, the spinal nerve roots travel within the dural sac and they travel below the level of L2 as the cauda equina.

Cervical spinal nerves (C1–C4)

The first 4 cervical spinal nerves, C1 through C4, split and recombine to produce a variety of nerves that subserve the neck and back of head.

Spinal nerve C1 is called the suboccipital nerve which provides motor innervation to muscles at the base of the skull. C2 and C3 form many of the nerves of the neck, providing both sensory and motor control. These include the greater occipital nerve which provides sensation to the back of the head, the lesser occipital nerve which provides sensation to the area behind the ears, the greater auricular nerve and the lesser auricular nerve. See occipital neuralgia. The phrenic nerve arises from nerve roots C3, C4 and C5. It innervates the diaphragm, enabling breathing. If the spinal cord is transected above C3, then spontaneous breathing is not possible. See myelopathy

Brachial plexus (C5–T1)

The last four cervical spinal nerves, C5 through C8, and the first thoracic spinal nerve, T1,combine to form the brachial plexus, or plexus brachialis, a tangled array of nerves, splitting, combining and recombining, to form the nerves that subserve the upper-limb and upper back. Although the brachial plexus may appear tangled, it is highly organized and predictable, with little variation between people. See brachial plexus injuries.

Lumbosacral plexus (L1–C0)

The anterior divisions of the lumbar nerves, sacral nerves, and coccygeal nerve form the lumbosacral plexus, the first lumbar nerve being frequently joined by a branch from the twelfth thoracic. For descriptive purposes this plexus is usually divided into three parts: lumbar plexus, sacral plexus, and pudendal plexus

Neurotransmitters

The main neurotransmitters of the peripheral nervous system are acetylcholine and noradrenaline. However, there are several other neurotransmitters as well, jointly labeled Non-noradrenergic, non-cholinergic (NANC) transmitters. Examples of such transmitters include non-peptides: ATP, GABA, dopamine, NO, and peptides: neuropeptide Y, VIP, GnRH, Substance P and CGRP.[4]

See also

References

  1. ^ "peripheral nervous system" at Dorland's Medical Dictionary
  2. ^ Maton, Anthea; Jean Hopkins, Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright (1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. pp. 132–144. ISBN 0-13-981176-1. 
  3. ^ James S. White (21 March 2008). Neuroscience. McGraw-Hill Professional. pp. 1–. ISBN 9780071496230. http://books.google.com/books?id=bBsvkBiQAy0C&pg=PA1. Retrieved 17 November 2010. 
  4. ^ Pharmacology, (Rang, Dale, Ritter & Moore, ISBN 0443071454, 5:th ed., Churchill Livingstone 2003). Page 132.